
Chapter 1 What is DEC 6.2 and what not?

1

Delphi Encryption Compendium 6.2

This is the official documentation for the Delphi Encryption Compendium 6.2 (or short DEC 6.2)

library. A list of the main changes to version 6.0 can be found in the VersionHistory.pdf document.

Document version: 1.2 as of 15th May 2021

If you are using DEC Lite the chapters about the cipher algorithms and their demo applications are

irrelevant to you. The full version of this library including the cipher algorithms can be found here:

https://github.com/MHumm/DelphiEncryptionCompendium

Disclaimer: while we try to keep this document updated and correct, we cannot guarantee that the

content is 100% error free and/or 100% complete. If you find any issues with it please tell us so we

can improve it.

Contents
1 What is DEC 6.2 and what not? .. 3

1.1 Text conventions used in this documentation .. 3

1.2 Revision history of this document .. 4

2 A short explanation of cryptography .. 5

2.1 CRC – Cyclic Redundancy Check ... 5

2.2 Hash functions .. 5

2.3 Cipher functions ... 6

2.4 Random number generator .. 7

3 DEC explained in detail ... 8

3.1 Installation .. 8

3.2 General structure ... 8

3.3 Using DEC ... 11

3.3.1 The DEC base class .. 11

3.3.2 Using the formatting routines .. 11

3.3.3 Using the CRC algorithms ... 13

3.3.4 Using the hash algorithms .. 14

3.3.5 Using the key deviation algorithms .. 20

3.3.6 Using the cipher algorithms .. 22

3.3.7 Using the random number generators ... 31

3.3.8 Useful helper routines .. 33

3.3.9 TDECProgressEvent – displaying progress of an operation ... 34

3.3.10 DECOptions.inc ... 35

3.3.11 Translating exception messages ... 36

https://github.com/MHumm/DelphiEncryptionCompendium

Chapter 1 What is DEC 6.2 and what not?

2

3.3.12 List of no longer recommended algorithms .. 37

3.4 The class registration mechanism... 38

3.5 Extending DEC .. 40

3.5.1 Structure and style ... 40

3.5.2 Adding new ciphers .. 41

3.5.3 Adding new cipher paddings / block modes ... 41

3.5.4 Adding new hash algorithms .. 42

3.5.5 Adding new formatting classes ... 42

3.5.6 Adding new CRC variants .. 43

3.5.7 Adding unit tests ... 44

3.5.8 Hash unit test data management ... 45

4 Demos .. 46

Chapter 1 What is DEC 6.2 and what not?

3

1 What is DEC 6.2 and what not?

DEC is a collection of cryptographic hash functions, cipher algorithms and CRC checksum routines

written in Delphi and provided as open source under the Apache License 2.0. A short description of

each of those algorithm categories can be found in the next chapter. It is a careful redesign of DEC

5.2 with the aim to be better maintainable, functionality wise compatible with DEC 5.2, but also to

get rid of various things hindering the use on other platforms than Win32. In short, it is an internally

improved version of DEC 5.2. Since the changes were so many and big and because they do influence

the interface to your code they warrant a 6.0 version number. By adding XMLDOC comments to quite

a lot of the methods etc. and by writing this documentation we also wanted to make this library

more accessible to the casual developer. A list of the main changes can be found in the last chapter.

The minimum supported Delphi version is Delphi 2009 now for the Win32 platform and XE2 for

Win64 and OS X. Support for the Android and iOS platforms requires at least Delphi 10.1 Berlin, as in

this release some previously omitted data types were added to the mobile compilers.

It should be mostly Free Pascal (FPC) compatible now as somebody contributed some necessary

changes, but since the main developer does not use FPC it is not tested on a regular basis. If you spot

any FPC failures/issues please report them via Issues on the GitHub project.

While DEC contains sample programs and this documentation includes a little bit of cryptographic

background it is not a beginner’s tutorial for properly using cryptography! The authors of this library

cannot and will not take any responsibility in any way for what you do with DEC!

Additionally, DEC is not written with maximum possible speed in mind. It currently cannot use any

hardware units of modern CPUs providing special commands for speeding up encryption and on

platforms other than Win32 it doesn’t use assembler. While the aim should of course be to provide

decent speed, the portability and maintainability of the library is at least equally important. But if

volunteers want to help with coding and improving the library who knows where it can get to?

A basic set of DUnit based unit tests is being provided as well to ensure that modifications of DEC do

not break anything. While not covering 100% of all possible test cases it helped us quite a lot during

development as they uncovered many failures which we could fix before releasing it.

1.1 Text conventions used in this documentation

Text formatted in Courier New and italics references method or parameter names,

properties, variables and class or unit names of DEC itself. Text formatted in italics but not in Courier

New references Delphi RTL types or unit names.

Chapter 1 What is DEC 6.2 and what not?

4

1.2 Revision history of this document

1.0 2020/12/13 Initial revision, published with DEC 6.0

1.1 2021/01/24 Improved installation chapter
Replaced chapter 5 with a list of changes to DEC 6.0 instead of 5.2 and moved
this into a separate document.
Replaced the progress event chapter as the technique used has been changed
completely.
Improved structure of the cipher algorithm chapter and explained special
handling of key length for AES algorithm.
Revised chapter 3.3.4 as the structure of the hash implementations changed a
little and additional functionality (HMAC and PBKDF2) was added.

1.2 2021/05/02 Fixed punctuation and grammar and added extensions made for SHA3 hash.

Chapter 2 A short explanation of cryptography

5

2 A short explanation of cryptography

Cryptography in general is a way of encrypting a message in such a way that only a person with the

correct key can decrypt and read it. The message thus can be transferred over some insecure

communication channel without enabling an unauthorized reader to read its contents.

But cryptography is more than that and DEC not only provides algorithms for encryption and

decryption of text and data.

Besides some helper routines and some formatting classes DEC provides three types of algorithms

which will be explained in the next subchapters.

2.1 CRC – Cyclic Redundancy Check

CRC algorithms are usually used to calculate a checksum over some data in order to be able to find

out later on whether that data has been transferred correctly or stored properly on disc. Depending

on the exact CRC algorithm used it can detect one or more randomly changed bits in a data stream,

but the algorithm cannot correct those. Algorithms additionally being able to correct failures up to a

certain degree are called error correction codes (ECC) but those are not subject of DEC.

Since it is comparatively easy to produce two messages with different contents (called a collision in

the context of cryptography) but the same CRC checksum, they are not suited for cryptographic

means like storing a password in a non-reversible way or guarding against malicious alternation of

the data transferred. The number range of most CRC variants is simply way too small for this.

CRCs are mostly used because they can be computed quite fast. That is even more beneficial in

embedded hardware where the CPU is comparatively slower than even entry level Smartphone

CPUs. Many commonly used but not all CRC polynomials are initialized in such a way that calculating

the CRC over the data and the appended CRC checksum leads to a result of 0. This makes checking

the CRC checksum somewhat easier.

DEC contains a variety of CRC algorithms sharing the very same call interface, which makes it really

easy if it should be necessary to switch the algorithm during development of an application.

2.2 Hash functions

Hash functions are a bit like CRC algorithms as far as they are mathematical one-way functions,

which generate a non-reversible number from data or text given to the hash-function. The resulting

number has always the same length, no matter what size the data has over which the hash has been

calculated.

Since the resulting number is a quite big number, mostly 64 bit or more, the probability of collisions

is significantly smaller than for CRC algorithms. Because of this hash functions are often used to

prove that some text or data has not been modified or they are used to store passwords in a way

Chapter 2 A short explanation of cryptography

6

which makes it impossible to recover the original clear text of the password without brute force

calculation.

If hash functions are to be used for password purposes the user would enter his password, the

system would calculate the hash over it and compare that to the stored hash value of that user’s

password. If both match the user has entered his correct password.

The brute force password breaking approach means, that one has to calculate the hash value of all

permutations of allowed password characters and compare those to the stored hash value. If the

hash algorithm has been properly selected and is being properly used this should be some quite

time-consuming task.

Some words of caution:

1. Before using a hash function for use as one-way password storage check whether there are

already known attacks or collisions for that algorithm. Do not use it when there are known

collisions, as this enables to enter your system with a different password than the original one as

well.

2. Do not simply hash the entered password with the algorithm and store that hash. An attacker

with a precomputed table of hash values for any given input will get into your system in no time.

Such tables are called rainbow tables, need quite a lot of disc space, but are readily available for

most well-known hash algorithms. Now what to do? Simple: add something to the password

entered and which is covered by the hash as well. Best would be a value which is different for

each password record you create. You can store that value along with your hash value, as it will

be needed by your password check function. Another thing to do is to calculate the hash of the

hash of the hash. You get it: calculate the hash over the data several times always feeding the

result of the last hash calculation as input to the new one. This also defeats the direct use of

rainbow tables.

3. Pick a hash algorithm which is slow to be calculated. A brute force attack will be slowed down

then, especially if combined with the methods of 2.

2.3 Cipher functions

Cipher functions are algorithms which take clear text or some binary data and encrypt it, so that

somebody getting hold of that encrypted data can only make sense out of it if he has the right key to

decrypt it.

There are different cipher algorithms available which have different key lengths and different

cryptographic strength. Of course, they also differ in complexity and calculation time and block-based

algorithms can differ in block size.

Some of them work on blocks of data with a fixed length. They are generally called block ciphers. For

those different padding modes are available to fill up blocks when the size of the data to be

encrypted is smaller than block size or not an exact multiple of it. Some of these padding modes

additionally enhance security by basing the key for the next block on the encrypted output of the

Chapter 2 A short explanation of cryptography

7

previous block. Other algorithms work with streams and are thus independent on block size. They are

generally called stream ciphers.

DEC provides different padding algorithms, which can be used for all block-based cipher algorithm

implementations as they are implemented in a base class. For the sake of completeness, the insecure

and not recommended ECB (Electronic Code Book) padding mode is being provided as well. DEC also

provides useful wrappers which will e.g. allow working with TStream descendants even for block

ciphers.

Before using any of the ciphers provided check whether they are suitable for your intended purpose:

1. Do you need compatibility to some other software?

2. Which security level is needed?

3. Check whether the algorithm you want to select is already known as broken! We cannot

guarantee that a given algorithm is not yet broken. If we should already know about it we will

document this of course.

4. If your software is to be used in different countries, check whether an algorithm of the selected

strength is allowed in your target countries, as some forbid strong cryptography. I do not mean

the old and luckily dead 40-bit US export cryptography limit.

2.4 Random number generator

For various cryptographic related functions good random numbers are required. Computer can only

generate pseudo random numbers1 in software (Pseudo Random Number Generator, PNRG). A good

PNRG needs to have an even distribution of the output values.

Delphi itself includes a PNRG in the system unit, which is automatically included into all your units.

This PNRG can be used by calling the Random(x) method. The necessary initialization by calling the

Randomize procedure is automatically done by the Delphi RTL nowadays. If that would not be the

case it would always produce the same sequence of random numbers.

DEC also contains a PNRG using a cryptographic hash function by default which makes it better suited

for cryptographic purposes than Delphi’s default out one.

1 https://simple.wikipedia.org/wiki/Pseudorandomness

https://simple.wikipedia.org/wiki/Pseudorandomness

Chapter 3 DEC explained in detail

8

3 DEC explained in detail

3.1 Installation

If you fetch your copy of DEC via Tools/GetIt the following instructions do not apply to you.

Since DEC does not provide any components installing it is quite simple. Just unzip your downloaded

DEC distribution into some empty folder. Make sure to keep the directory structure intact.

For RAD Studio/Delphi or C++ Builder:

Afterwards compile and run the SetIDEPaths console application from Install subdirectory. This will

add the Source directory of DEC to the library paths of all RAD Studio installations found on your

computer. Restart any open RAD Studio IDEs afterwards to reload their settings.

3.2 General structure

DEC 6.0 contains the following parts/directories:

\Docs

Contains all the documentation, including the one you are currently reading. If you need help using

DEC please look at the provided docs first.

\Source

This directory contains the units of DEC in source code form, so everything is transparent to you.

File Purpose/Contents
DECBaseClass Contains the root class of all DEC classes and the

class registration mechanism, which is explained
in chapter 0
The class registration mechanism.

DECTypes This one contains just a few type declarations.
DECCipherBase Contains the root class all cipher classes inherit

from, providing the basic infrastructure used by
the individual cipher classes.

DECCipherModes This unit contains the class implementing the
block chaining modes like CBC. Normally only
used internally.

DECCipherFormats The class contained in this unit provides various
convenient ways to feed the data which shall be
encrypted or decrypted to DEC. For instance, it
provides methods to feed the data as string or as
TStream.

DECCipher This unit contains all the different cipher
algorithm implementations.

DECDataCipher This unit contains various precalculated/
constant initialization- or permutation tables for
the different cipher algorithms.

Chapter 3 DEC explained in detail

9

DECData This unit contains precalculated/
constant initialization- or permutation tables
used in both cipher and hash algorithms.

DECDataHash This unit contains various precalculated/
constant initialization- or permutation tables for
the different hash algorithms.

DECHashBase Contains the root class all hash-algorithms
inherit from, providing the basic infrastructure
used by the individual hash classes.

DECHash This unit contains all the different hash
algorithm implementations.

DECFormatBase Contains the root class all format-algorithms
inherit from, providing the basic infrastructure
used by the individual format classes.

DECFormat This unit contains all the different format
algorithm implementations.

DECCRC This unit contains various CRC implementations.
DECUtil This unit contains most if not all the exception

declarations used in DEC and various utility
methods to swap bytes in bigger datatypes, to
protect memory after use and a convenient little
method to convert the contents of a TBytes
array to RawByteString, usually used for
debugging purposes.

DECRandom This unit contains the cryptographic pseudo
random number generator.

DECHash.asm86.inc This include file contains x86 assembler
implementations of most of the hash-algorithms.
These are being used then the NO_ASM define in

DECOptions.inc is turned off and the target

is Win32.
DECOptions.inc Include file with various compiler defines

controlling how DEC works in certain cases. For
details see chapter 3.3.10 DECOptions.inc.

\UnitTests

In order to ensure that DEC properly works and that any change somebody should make to its source

code still produces a properly working version of DEC we created a bunch of DUnit unit tests.

Additionally, we try to be DUnitX compatible with our tests. We currently simply prefer DUnit

because DUnit is included with older Delphi versions already and it has a nice and helpful GUI runner.

We did not yet manage to get the GUI runner of DUnit X to work. DUnit also hast a test case skeleton

generator built into an IDE wizard.

You should be able to load the DECDUnitTestSuite or the DECDUnitXTestSuite Project,

compile and run it. You can select between DUnit and DUnitX by enabling or disabling the

DUnitX define. It is located in defines.inc in the unit test projects. In order to enable it remove

the . in front of the $ sign. To disable it, add the . again.

Chapter 3 DEC explained in detail

10

With this unit test project, you should be able to verify that the version of DEC you are using passes

all tests. The tests mostly cover the basics only so these are not a 100% guarantee that DEC is bug

free, but those tests already helped us quite a lot while reshaping DEC!

Those users knowing the old distribution might know the old test application using the test vectors

(test data) from a text file. We not only converted this hard to read application into unit tests, we

also added tests for areas not covered yet, e.g. for the CRC routines.

\Demos

This directory contains some simple demo projects aimed to help you getting started with DEC. A list

and descriptions of the provided demos can be found in chapter 4 Demos.

Chapter 3 DEC explained in detail

11

3.3 Using DEC

3.3.1 The DEC base class

All classes of DEC derive from a common base class TDECObject. This class is implemented in

DECBaseClass.pas. Most of its methods are class methods, so they can be directly called on a

class reference without requiring an object reference. But of course, they can be called on a proper

object reference as well. Most deal with DECs class registration mechanism, which is described in

detail in chapter 3.4 The class registration mechanism. You usually do not have much if any contact

with this class unless you work on the DEC code base.

Method Purpose
Identity This class method delivers a number which should be unique

of a class derived from this base class. You can store this
number in a file to encode the hash- or cipher algorithm used
for creating this file and by using the appropriate registration
mechanism you can later on quite easily create the required
hash or cipher instance needed based on this identity.

FreeInstance This method is only available if use ASM routines in
DECOptions.inc has been turned on. It has to do with safely
clearing memory on its release by overwriting it with zeroes.

SelfTest While knowing what a self-test generally is it’s not clear what
exactly was meant with this. It might get removed in a
subsequent version.

RegisterClass Adds the class reference to the global list of registered classes
which is passed as parameter. This method is usually not
called in user code, as each relevant DEC class is already being
registered in the initialization section of the unit
implementing the class.

UnregisterClass Removes the class reference from the global list of registered
classes which is passed as parameter. This method is usually
not called in user code, as each relevant DEC class is already
being unregistered in the finalization section of the unit
implementing the class.

GetShortClassNameFromName Returns the short class name of a class name being passed as
parameter. For instance, the short class name of
TCipher_Skipjack is Skipjack.

GetShortClassName Returns the short class name of this class.

3.3.2 Using the formatting routines

Why do we start our tour through the DEC libraries with the formatting routines? That’s simple:

because they can be used together with all other categories of routines. They are being used to

format data in various ways and to pass that to the other methods and functions or to convert the

data returned by those into one of the provided standard formats. And sometimes it’s simply helpful

to have a quick way to display a hexadecimal representation of returned binary data to check

something while debugging.

Chapter 3 DEC explained in detail

12

All the provided formatting classes have a common ancestor: TDECFormat which is implemented in

the DECFormatBase.pas Unit and all of those provide all the public methods of TDECObject as well

as described in the preceding chapter.

The formatting classes provide their complete functionality in form of class procedures and class

functions, so you never need to create an instance of a formatting class. They are implemented in

DECFormat.pas.

The following methods are being provided:

Method Purpose
Encode Formats a given byte array into the format of the formatting class. The

output is a byte array. Two deprecated overloads for use with RawByteString
and untyped data are being provided as well. These overloads have a
RawByteString as result.

Decode Formats a byte array given in the format of the formatting class back into
the original format. Output is a byte array.

IsValid Checks whether the data passed to it is valid for that particular formatting.
This is useful as some formats only allow a certain range of input values.

UpCaseBinary This method works similar to the UpCase routine of system.pas with the
following differences: it only works for the character range a-z and input and
output are not a char each but a byte instead.

TableFindBinary This method looks for the first occurrence of a given byte within a given byte
array. If the byte has been found the index within the byte array is being
returned, otherwise -1 is returned.

List of provided formatting classes

Format class Format / purpose
TFormat_Copy This class doesn’t apply any formatting change on the data passed in.

It can be used in places where a formatting class is being expected but
when you do not want to have any format change applied.

TFormat_HEX Converts the input into hexadecimal representation. One byte of the
input will be converted into a two bytes hex representation. Be aware
that Unicode strings are UTF16 encoded, which means that each
character you see in the string consists at least of 2 bytes, even if it is
in the ASCII range. The 2nd byte will simply be 0 in that ASCII case. The
letters A-F in the hexadecimal representation will be uppercase A-F
characters.

TFormat_HEXL The same as format TFormat_HEX, just with lower case letters a-f.
TFormat_Base16 Alias for TFormat_HEX for compatibility reasons.
TFormat_Base16L Alias for TFormat_HEXL for compatibility reasons.
TFormat_DECMIME32 This is a special format created by Hagen Reddmann, the original

author of DEC. We do not recommend using this one, as it will only be
compatible with DEC itself!

TFormat_Base64 This format converts 8-bit bytes into some code page invariant ASCII
representation. Means: each input byte will be encoded in su8ch a
way that it can be written with an ASCII character which is encoded
the same on all ASCII DOS or ANSI codepages since it belongs to the 7-
bit ASCII range. While this means you can transmit such binary data
with an ordinary e-mail application within the message body it also

Chapter 3 DEC explained in detail

13

means, that data encoded with this scheme requires a bit more space
as from each byte of the Base64 representation only the lower 7 bits
can be used.

TFormat_MIME64 Alias for TFormat_Base64 for compatibility reasons.
TFormat_Radix64 This is a variant of TFormat_Base64 used in the OpenPGP context.

It is basically a TFormat_Base64 with an added 24-bit checksum.
TFormat_PGP Alias for TFormat_Radix64 provided for compatibility reasons but

deprecated.
TFormat_UU The UUEncode formatting is slightly similar to Base64. From the name

it is Unix to Unix and is being used to transfer binary data via e-mail.
24 bits of input are being re-encoded into 4x 6 bit. For this only the
ASCII characters 33 to 96 are being used.

TFormat_XX This format is quite similar to TFormat_UU. It just further reduces

the characters used to encode the binary data to just the letters, digits
and the plus and minus sign. This shall reduce the danger that some
application somehow interprets special characters as something else
and thus ruins the encoding.

TFormat_ESCAPE This is a variant of the Hex format but with the addition that certain
characters are treated as escape characters. These are especially the
escape sequences found in C-style languages used to denote line
breaks or carriage returns etc. This is an incomplete list of the escape
characters : \a \b \t \n \v \f \r

In addition to the methods listed above the formatting classes do have this class variable, which they

inherit from their base class:

ClassList – this public class variable contains the hash algorithm registration list, which provides

 access to all hash classes. For details about the registration mechanism see chapter

 3.4 The class registration mechanism.

3.3.3 Using the CRC algorithms

The CRC algorithms are located in the DECCRC.pas Unit. There are two sorts of routines being

provided. The first and easier to use ones calculate the CRC value in one single step and are thus

most suited for smaller amounts of data to be processed, as any progress reporting during their

runtime is not possible.

There exist the following 4 variants:

◼ CalcCRC with a buffer as parameter. Pass in any array or TBytes type you like and pass a

parameter telling how many bytes from that buffer, starting at its beginning, go into the CRC

calculation.

◼ CalcCRC with a callback as parameter. As callback you need to pass a method having an

untyped buffer as var parameter and an Int64 typed size parameter specifying how many bytes

from the beginning of your buffer parameter will go into the CRC calculation. The CalcCRC

routine will call your callback as often as needed until it has Size bytes for calculating the CRC.

Chapter 3 DEC explained in detail

14

◼ CRC16 is a variant which does not let you specify which algorithm to use. It will use the

IBM/ARC/MODBUS RTU CRC16 algorithm.

◼ CRC32 is a variant which does not let you specify which algorithm to use. It will use the CRC32-

CCITT algorithm. It works on an untyped Buffer parameter and processes Size bytes of that

buffer, beginning at the start of it.

The other sorts of routines split the CRC processing into several steps and thus they give you finer

control about what to do at a given place in your code.

Caution: when using the CRC16 or CRC32 functions in a multithreaded application, you need to

 call CRCInitThreadSafe first!

3.3.4 Using the hash algorithms

3.3.4.1 Base structure of the hash algorithms

The hash algorithm classes have a mostly common API. Parts of this API are implemented in abstract

ancestor classes. For future use a TDECPasswordHash class has been introduced. All hash

algorithms specifically well suited for password hashing will inherit from this one. As of now DEC

does not contain any specific password hashing classes yet. The following diagram illustrates this:

TDECPassword
Hash

THash_Panama THashBaseMD4

TDECHashBase TDECFormat

…

IDECHash

TDECHashAuthen
tication

Thash_RipeMD
256

THashBaseMD4

THash_SHA0

THash_SHA256 THash_SHA224 THash_SHA1

TDECHashBit

TDECSHA3Base

TDECSHA3_224 TDECSHA3_256

IDECHashBitsized

…

Chapter 3 DEC explained in detail

15

The base classes TDECHashBase is implemented in the DECHashBase.pas unit. The

TDECHashAutentication and TDECPasswordHash classes are both implemented in

DECHashAuthentication unit.

The TDECHashAuthentication class contains all key deviation, mask generation function, hash

message authentication and password based key deviation function implementations. They can only

be used from a class which actually implements a hash algorithm, this means it must be a class

descending from TDECHashAuthentication.

In order to make it easy to find out whether a given hash class is specifically designed for password

hashing, all hash classes contain a class function named IsPasswordHash. This method checks,

whether the class inherits from TDECPasswordHash.

Most hash algorithms work on messages with whole 8-bit bytes as contents. Other hash classes,

most noteworthy the SHA3 family and derived algorithms, can additionally process messages ending

on fractions of bytes or even a few bits alone. Those algorithms inherit either from the

TDECHashBit class directly or if they are from the SHA3 family from TDECSHA3. The

TDECHashBit class is implemented in the DECHashBitBase unit and it provides the

IDECHashBitsized interface, which is an extension of the IDECHash interface. The

TDECHashBit class only adds one property: FinalByteLength. If this is not 0 (its default

value), it denotes the number of bits of the final byte of the message which shall be included in the

hash calculation. If the method used for hashing contains a size parameter, this size needs to include

such a partial last byte and the FinalByteLength specifies that it is a partially used byte. For

SHA3 based algorithms the padding to fill up this last byte is automatically included in the algorithm

so one cannot specify a padding value for these algorithms.

All hash classes provide all the public methods of TDECObject as well as described in chapter 3.3.1

The DEC base class.

If you like to use the good programming habit of programming against interfaces instead of using

concrete classes you can do so, as TDECHashBase implements the IDECHash interface, which

contains all public methods and properties of TDECHashBase. The exceptions are the class methods,

as interfaces in Delphi do not support those. This interface can be used for programming against

interfaces with all hash algorithms. There might be rare exceptions where a specific hash algorithm

needs additional properties. These are the same as the additional methods and properties described

in the chapter 3.3.4.3 Exceptions to the common API for hash classes and they cannot be used via

this interface.

Chapter 3 DEC explained in detail

16

3.3.4.2 Methods for using the hash classes

Since all the hash classes inherit from TDECHashBase, they mostly share a common API for using

them. Exceptions to this rule will be explained in the next chapter.

Method Purpose
Init This method needs to be called directly before each hash value

calculation. It initializes the properties of the algorithm and clears
all required buffers with default values.

Done Finalizes hash calculation and clears the buffers used in a safe way
to prevent stealing of data. Must be called at the end of each hash
value calculation.

Calc Calculates the hash value over a chunk of data.
DigestAsBytes Returns the calculated hash value as TBytes byte array.
DigestAsString Returns the calculated hash value as a Unicode string. If one of the

formatting classes is being passed via the optional Format

parameter this formatting is being applied to the return value, e.g.
you can get the hash value hex formatted this way for instance. If
no formatting is being passed, the returned string is simply the
interpretation of the calculated hash value bytes as a string. In case
of an UnicodeString, which is being returned here, the result might
be undesired.

DigestAsRawByteString Returns the calculated hash value as a RawByteString. If one of the
formatting classes is being passed via the optional Format

parameter this formatting is being applied to the return value, e.g.
you can get the hash value hex formatted this way for instance. If
no formatting is being passed, the returned string is simply the
interpretation of the calculated hash value bytes as a string.

DigestSize Returns the length of a calculated hash value in bytes.
BlockSize Returns the size of a data block in bytes. The data given to the hash

algorithm is being processed in blocks of this size internally and if
the data does not fill the last block completely it will be
automatically filled with the PaddingByte specified.

ClassByName Searches for a class with the name given as parameter in the class
registration list. If a matching class is found, the class reference is
returned. This can be used to create an object of that class. So, this
method is useful when one wants to create an object of a certain
hash-algorithm implementation but only knows the name of the
hash class as string. If the queried class cannot be found in the
registration list an EDECClassNotRegisteredException

exception will be raised.
ClassByIdentity If one knows the numeric identify value of a given hash-

implementation class, this method can be used to retrieve the class
reference from the registration list. So, this method is useful if one
wants to create an object-instance of a certain hash-
implementation class for which one knows the identity value (e.g.
because such a value is stored in a file header).
If the queried class cannot be found in the registration list an
EDECClassNotRegisteredException exception will be

raised.

Chapter 3 DEC explained in detail

17

CalcBuffer Calculates the hash value over a given buffer of data. The size of the
buffer in bytes needs to be specified as well and the result is the
calculated hash value as TBytes array.

CalcBytes Calculates the hash value over a given TBytes buffer of data. The
result is the calculated hash value as TBytes array.

CalcString Calculates the hash value over a string. There exist two overloads:
one for Unicode strings and one for RawByteStrings. Both have an
optional parameter where you can pass a formatting class. The
formatting will be applied to the calculated hash value, e.g. you can
get the hash value hex formatted this way for instance. If no
formatting is being passed, the returned string is simply the
interpretation of the calculated hash value bytes as a string. In case
of an UnicodeString, which is being returned here, the result might
be undesired.

CalcStream Both overloads of this method calculate the hash value over the
contents of a stream. The stream may be a file stream or a memory
stream or any other kind of stream. You have to specify the size of
the stream as a parameter.

One of the overloads returns the hash value as a RawByteString
return value and for this it contains an optional format parameter
for passing a formatting class used to format the output. The other
one contains a TBytes parameter where it will return the calculated
hash value in. There cannot exist overloaded methods in Delphi
which only differ in the data type of the return value.
The last parameter is optional. You can supply a callback method
here which will be called by the method to report calculation
progress. This is especially useful for big sized data, as you can
display the progress of the operation via this callback method. Be
aware though, that if the hash method is running in the application
main thread any message pump required for updating display
controls might not be run. So, if calculating hash values over large
amounts of data and wishing to display progress you should run the
hash calculation in a separate thread. This allows display updates to
work and keeps your main thread responsible.

CalcFile Both overloads of this method calculate the hash value over the
contents of a file. The file is specified by its path and file name.

One of the overloads returns the hash value as a RawByteString
return value and for this it contains an optional format parameter
for passing a formatting class used to format the output. The other
one contains a TBytes parameter where it will return the calculated
hash value in. There cannot exist overloaded methods in Delphi
which only differ in the data type of the return value.
The last parameter is optional. You can supply a callback method
here which will be called by the method to report calculation
progress. This is especially useful for big sized data, as you can
display the progress of the operation via this callback method. Be
aware though, that if the hash method is running in the application
main thread any message pump required for updating display
controls might not be run. So, if calculating hash values over large
amounts of data and wishing to display progress you should run the

Chapter 3 DEC explained in detail

18

hash calculation in a separate thread. This allows display updates to
work and keeps your main thread responsible.

In addition to the methods listed above the hash classes do have this class variable, which they

inherit from their base class:

ClassList – this public class variable contains the hash algorithm registration list, which

 provides access to all hash classes. For details about the registration mechanism

 see chapter 3.4 The class registration mechanism.

All classes also have this common property:

PaddingByte – the value assigned to this byte is being used to fill up data passed to the hash

 algorithm if the data does not completely fill the last block. Means: if the size of

 the data passed cannot be divided by BlockSize without reminder.

The TDECHashAuthentication class implements the following class methods:

Method Purpose
IsPasswordHash Returns true if this class implements a hash algorithm particularly

designed for hashing passwords. Since
TDECHashAuthentication is not to be used directly “this”

means the descending class implementing the actual hash
algorithm.

MGF1 MGF1 is a mask generation function defined in the Public Key
Cryptography Standard #1 published by RSA Laboratories23
More details are given in chapter 3.3.5.1 MGF1.

KDF1, KDF2, KDF3 All these key deviation methods exist as the same overloads with
the same parameters. One overload each takes untyped
parameters and the other one TBytes based parameters. More
details are given in chapter 3.3.5.2 KDF1, KDF2, KDF3.

KDFx Key deviation method similar to KDF1-KDF3, but not based on any
official standard. Developed by the original author of DEC.

MGFx Key deviation method similar to MGF1, but not based on any
official standard. Developed by the original author of DEC.

HMAC Creates a message authentication code over a given text. It is based
on rfc2202. Parameters are the secret Key both parties shared

securely at some point and the Text the authentication code shall

be calculated on. Returned is the calculated authentication code.
PBKDF2 This is a key deviation function based on a user specified password,

a salt value and an iteration count. Returned is the generated
password hash value. It is based on RFC 2898 and PKCS #5 and uses
the same algorithm as HMAC.

2 https://en.wikipedia.org/wiki/Mask_generation_function#MGF1
3 MGF1 is defined in the IEEE P1363a and PKCS#1 v2.1 standards

https://en.wikipedia.org/wiki/Mask_generation_function#MGF1

Chapter 3 DEC explained in detail

19

The TDECHashBit class implements the following property, which is accessible via the

IDECHashBitsized interface:

Property Purpose
FinalByteLength Defines the number of bits of the final byte of the message which

will be considered when calculating the hash of a message with an
algorithm which can define the processed message length in bits.
Most notable algorithm for this is SHA3. A value of 0 means that all
bits of the last byte are included in the message calculation. SHA3
fills automatically up the last byte as necessary (padding) when the
final byte length is lower than 8 bit. The padding cannot be
influenced by the caller as this is standardised with the algorithm.

3.3.4.3 Exceptions to the common API for hash classes

There are a few hash classes which provide additional API methods or properties. The following

paragraphs list those. Be aware that those additional methods or properties are not accessible via

the IDECHash interface.

THash_Snefru128, THash_Snefru256, THash_Haval128, THash_Haval160, THash_Haval224,

THash_Haval256, THash_Tiger and its alias THash_Tiger192

All of them have an additional property Rounds. Both algorithms use several rounds of calculation

where the result of the preceding round will be the input for the next round. This property sets the

number of rounds to use.

For the THash_Tiger class the minimum number of rounds is 3 and the maximum accepted

number is 32. Trying to specify a value outside this range will result in either setting it to the

minimum value of 3 or the maximum value of 32.

For the Haval algorithms the allowed number of rounds is between 3 and 5. If a number outside this

range is assigned, the number actually picked depends on the DigestSize set. For a

DigestSize of 20 or lower it will be 3 rounds, for DigestSize 28 or lower but bigger than 20 it

will be 4 rounds and for values bigger 28 it will be 5 rounds.

THash_Sapphire

This one has a property RequestedDigestSize. With this you can define how many bytes of the

calculated hash value will be returned via the DigestAsBytes method. The Digest method is

not affected by this. Values bigger 64 do not make sense, as the hash value is only 64 byte long. If the

RequestedDigestSize is set to 0 the default value of 64 byte is being used.

Chapter 3 DEC explained in detail

20

3.3.5 Using the key deviation algorithms

Key deviation algorithms4 are used for deriving further keys from already existing keys without being

able to determine the key from which the derived one was derived of. A simple scheme for deriving a

2nd key from of a first one could be to calculate the hash sum of the first key via some well-defined

hash algorithm. If a 3rd key is needed, one would simply calculate the hash sum on the 2nd key, using

the same algorithm. That way nobody can tell whether different keys descend from each other by

just looking at the keys.

One use case for this class of algorithms is to generate a password hash value using a hash algorithm

not originally developed for password hashing. Without applying the key deviation function the

original hash algorithm would create a too week hash value for safe use as a password hash.

Another use case is to derive keys for additional purposes from a password so these keys are tied to

the user login password.

Another property of those key deviation algorithms is, that one can specify the size of the key

resulting from the calculation.

All key deviation methods provided by DEC are class methods of the TDECHash class.

3.3.5.1 MGF1

This key deviation method has been specified in RFC 2437 PKCS #15. It is a variant of the KDF1

algorithm defined in the ISO 18033-2:2004 standard. DEC provides two overloaded class methods for

this. The first one takes an unspecified data parameter followed by a 2nd parameter specifying the

length of the data given in the first one in byte. The second one takes a TBytes array for the input

data.

Both methods have a parameter MaskSize. It specifies the length of the generated output in bytes.

The output is a TBytes array for both variants.

3.3.5.2 KDF1, KDF2, KDF3

These three algorithms are relatives. The difference between KDF1 and KDF2 is whether the

calculation loop counter runs from 0 to round – 1 or from 1 to rounds. KDF3 is like KDF1 but two

calculation steps are reversed.

For all these algorithms two overloads are being provided each. The first variant has an untyped

Data parameter for specifying the key from which a new one shall be deviated. Because this

parameter is untyped a second parameter DataSize is necessary where the caller needs to specify

the size to the data to be processed in bytes. The untyped Seed parameter is optional and can be

4 https://en.wikipedia.org/wiki/Key_derivation_function
5 https://www.ietf.org/rfc/rfc2437.txt

https://en.wikipedia.org/wiki/Key_derivation_function
https://www.ietf.org/rfc/rfc2437.txt

Chapter 3 DEC explained in detail

21

used as cryptographic salt value if the algorithm shall be used for password hashing purposes. If no

seed shall be given it is recommended to pass NullStr from SysUtils there. Since this

parameter is untyped it needs a SeedSize parameter which specifies the length of the seed passed

in bytes. If no seed is given this shall be zero. The last parameter MaskSize specifies the length of

the output created by this method in byte. The length may be longer or shorter than the length of

the Data parameter.

The return value is a TBytes array of byte.

The second overload is like the first one just with the Data and Seed parameters being TBytes

arrays thus not requiring the DataSize and SeedSize parameters. If these shall be used without

specifying a seed, it is allowed to pass a zero length Seed.

3.3.5.3 KDFx and MGFx

The original author of DEC implemented his own variants of the KDF and MGF algorithms. These are

not standardized. The unit test data for those stems from comparing the DEC 6.0 results to DEC V5.2,

which of course match.

3.3.5.4 PBKDF2

This is an algorithm for creating a password hash. The caller specifies the password entered, a salt

and an iteration count to make it less vulnerable to rainbow table attacks and the desired length of

the resulting key in byte. Returned is the generated password hash. For practical purposes it is wise

to use a different salt for each password and a high iteration count and store both along with the

password hash. When comparing an entered password with the generated hash these parameters

are needed again.

Chapter 3 DEC explained in detail

22

3.3.6 Using the cipher algorithms

3.3.6.1 Base structure of the cipher algorithms

The cipher algorithm classes have a mostly common API. Parts of this API are implemented in

abstract ancestor classes. The following diagram illustrates this:

All cipher classes provide all the public methods of TDECObject as well as described in chapter

3.3.1 The DEC base class.

TDECCipher

TDECCipherModes

TCipher_Blowfish TCipher_AES TCipher_1DES

TDECCipherFormats TDECFormat

…

TDECObject

TCipherNull

IDECCipher

Chapter 3 DEC explained in detail

23

3.3.6.2 TDECCipher

This is the abstract base class for all cipher implementations. Do not create concrete objects from

this class! It is being implemented in DECCipherBase.pas.

Many of the cipher algorithms are block ciphers, which means that they work on equally sized blocks

of data, often on blocks of 8- or 16-byte size. TDECCipher only provides abstract methods for

encrypting and decrypting a single block of data. The individual cipher classes will override those

abstract methods in order to actually provide the encryption/decryption functionality.

You normally do not create instances of this class directly in your code. For encrypting or decrypting

data, you will use instances of the concrete cipher classes from the DECCiphers unit.

Method Purpose
Context This class method is inherited from TDECCipher. It returns the

characteristics of the encryption algorithm like block size for block-
oriented algorithms. Details see in a subchapter following this table.

Init This method must be used to initialize the cipher with the algorithm
specific parameters. There exist three overloads of this method so
you can pick the one suited best to your data.
The parameters which need to be passed are:

• The encryption/decryption key. Make sure to select a key with
adequate complexity. Simple keys like 1234 or words from
dictionaries are unsuitable. Most cipher algorithms also have a
minimum and/or maximum key length.

• An initialization vector. When you encrypt or decrypt data of a
size bigger than the block size of the cipher algorithm each data
block is normally mathematically connected with the preceding
block. This increases security. The initialization vector is the data
needed for the first block, as this one has no preceding block.
This also means, that in order to properly decrypt any data you
need to know the value of the initialization vector which has
been used for encrypting that data. Only the ECB block mode
would not need an initialization vector, but this mode should be
avoided, as it is inherently less safe!

• Filler: if you are using a block cipher and the data to be
encrypted does not fill the last block completely this byte value is
being used to fill the reminder of the block.

The overloads differ in the data types for the key and initialization
vector parameters.

Done This method has to be called after processing the last block of
encryption or decryption operation. It properly finalizes the
cryptographic operation. If not being called, the cryptographic
operation is not complete and you will not process the data of the
last block, if a block cipher is being used otherwise the last byte
might not have been processed.

EncodeRawByteString This deprecated method encodes string data and returns the
encoded data as string. It is only being provided for compatibility
reasons. The replacement for it is the EncodeStringToString

method from the DECFormattedCipher unit.

Chapter 3 DEC explained in detail

24

DecodeRawByteString This deprecated method decodes string data and returns the
decoded data as string. It is only being provided for compatibility
reasons. The replacement for it is the DecodeStringToString

method from the DECFormattedCipher unit.
EncodeBytes Encodes data passed as a TBytes array. The result is a TBytes array

with the encrypted data. As optional parameter one of the
formatting classes can be passed. The formatting will be applied to
the encrypted data returned after encryption. For instance, one
could return the encrypted data in HEX or BASE64 format.

DecodeBytes Decodes data passed as a TBytes array. The result is a TBytes array
with the decrypted data. As optional parameter one of the
formatting classes can be passed. This would be done in order to
remove any formatting applied with passing a formatting class to the
EncodeBytes method which encrypted the data to be decrypted

now.
ClassByName Searches for a class with the name given as parameter in the class

registration list. If a matching class is found, the class reference is
returned. This can be used to create an object of that class. So, this
method is useful when one wants to create an object of a certain
cipher-algorithm implementation but only knows the name of the
cipher class as string. If the queried class cannot be found in the
registration list an EDECClassNotRegisteredException

exception will be raised.
ClassByIdentity If one knows the numeric identify value of a given cipher-

implementation class, this method can be used to retrieve the class
reference from the registration list. So, this method is useful if one
wants to create an object-instance of a certain cipher-
implementation class for which one knows the identity value (e.g.
because such a value is stored in a file header).
If the queried class cannot be found in the registration list an
EDECClassNotRegisteredException exception will be

raised.

The class additionally provides these properties:

Property
InitVectorSize Returns the size of the buffer for the initialization vector in bytes.

The size of this buffer depends on the cipher context of the individual
cipher algorithm used.

InitVector Provides read access to the data of the initialization vector specified
as parameter to the init method.

Feedback The data to be encrypted is in most cases bigger than the block size
of the used block cipher. In such cases blocks need to be “chained”
together to enhance security of the encryption. For this some data of
some kind (often derived by a formula or XOR) from the previous
block is used as an input parameter for the encryption of the next
block. In case of the first block the InitVector plays this role. This

property provides read-only access to this data.
State Provides read access to the internal state variable of the cipher. The

cipher is implemented as sort of a state machine and with this you
can see in which state the cipher operation is, e.g. whether done still

needs to be called or if it is already initialized by a call to init etc.

Chapter 3 DEC explained in detail

25

Mode Returns the block chaining mode of the cipher and allows to change
it. The block chaining mode defines how individual adjacent blocks of
cipher data are linked to each other mathematically. It is important
to link these blocks in order to strengthen the security of the
encryption used.

Do not inherit directly from this class if you want to add additional block ciphers, as not using

 one of the chaining methods from TDECPaddedCipher will result in vulnerable encryption

for any data larger than the block size of the algorithm used!

When passing data to EncodeBytes, DecodeBytes, EncodeRawByteString or

 DecodeRawByteString make sure the size of the data passed is the same as the

Context.BlockSize (or in rare cases Context.BufferSize)!

3.3.6.3 TCipherContext

This record is returned by the Context class method of each cipher class and provides the basic

properties of the cipher algorithm.

Property
KeySize Size of the encryption key in byte.
BlockSize For block-oriented ciphers: size of the block it operates on in byte.

For stream-oriented ciphers this will return 1.
BufferSize Size of the internal processing buffer in byte.
AdditionalBufferSize Some algorithms use another internal buffer. This is the size of this

buffer in byte.
NeedsAdditional

BufferBackup

Some algorithms use another internal buffer and some of those who
do need it to be saved in some situations.

MinRounds Minimum value for the Rounds property, if the algorithms provides

such a property as user changeable value. For all other algorithms
(even those having a non-user changeable rounds mechanism) this
will return 1. This minimum value is enforced in the setter for
Rounds.

MaxRounds Maximum value for the Rounds property, if the algorithms provides

such a property as user changeable value. For all other algorithms
(even those having a non-user changeable rounds mechanism) this
will return 1. This maximum value is enforced in the setter for
Rounds.

CipherType This set tells whether the algorithm is a block- or stream-oriented
one and if it is symmetric or asymmetric. At the time writing DEC
does not support asymmetric algorithms. For the Null-Cipher a
special value ctNull is defined.

Chapter 3 DEC explained in detail

26

3.3.6.4 TDECCipherNull

This is a special “do nothing” cipher, which can be used for general testing purposes.

 Make sure you do not use this in production code which relies on encryption as it will not

 encrypt your data!

3.3.6.5 TDECCipherModes

If you want to encrypt data larger than the block size of the block cipher algorithm used you need to

chain blocks. For this several methods have been developed which normally carry over information

from one block to another, so the following blocks are dependent on their preceding block. This is

being done to make it harder to crack the encryption. If somebody cracks the encryption of one

block, he cannot necessarily decrypt any of the previous blocks. Another necessity is to fill up the last

block, if it is not completely filled with data. This happens when your data doesn’t match block size.

Filling up is called padding.

Both kinds of operations, padding and block chaining, are implemented in the TDECCipherModes

class, which is implemented in the DECCipherModes Unit. You normally do not create instances of

this class directly in your code. For encrypting or decrypting data, you will use instances of the

concrete cipher classes from the DECCiphers unit. Those concrete cipher classes will provide all

the methods listed here for encrypting and decrypting data and thus these common methods are

described here instead for each cipher class again.

Method Purpose
Encode This method encrypts an untyped memory block. Parameters are the

block to be encrypted, a variable which will contain the encrypted
data and the size of that block in byte.

Decode This method decrypts an untyped memory block. Parameters are the
block to be decrypted, a variable which will contain the decrypted
data and the size of that block in byte.

Chapter 3 DEC explained in detail

27

3.3.6.6 TDECCipherFormats

All the methods for encrypting and decrypting data, which do not directly work on blocks of data but

on TStreams, strings or files, are added in the TDECCipherFormats class. All cipher algorithm

classes like TCipher_AES inherit from it in order to be able to provide these comfort methods

without needing to implement those all over again. When adding further ciphers in form of

additional classes they always need to inherit from this class!

If you like to use the good programming habit of programming against interfaces instead of using

concrete classes, TDECCipherFormats is your candidate as well. This class implements the IDECCipher

interface, which contains all public methods and properties of TDECCipherFormats and additionally

the initialization methods in case you need to reinitialize the interface reference during your use of it.

This can be used for programming against interfaces most cipher algorithms. There might be rare

exceptions where a specific cipher algorithm needs additional properties. These are listed at the end

of this chapter.

Method Purpose
EncodeBytes Encrypts the data contained in the TBytes based parameter and

returns a TBytes array with the encrypted data.
DecodeBytes Decrypts the data conainted in the TBytes based parameter and

returns a TBytes array with the decrypted data.
EncodeStream Encodes data provides as a stream. The output will be a stream itself.

Streams can be any sort of stream like memory or file streams. The
following parameters are being passed:

• The source stream containing the data to be encrypted. Ensure
that the position of this stream is at the starting position of the
data to be encrypted.

• The target stream into which the encrypted data will be written.
The data will simply be appended.

• DataSize specifies how many bytes starting from the current

position of the source stream have to be encrypted and put into
the destination stream.

• Progress is an optional parameter to a callback method. This

method is called to enable displaying the progress of the current
operation. This callback has the parameters Min, Max and Pos.
Pos is the position within the source stream. Min is also the
position in the source stream and Max is Min plus the number of
bytes to be encrypted.

DecodeStream Decrypts data provided as a stream. The parameters of this method
are the same as for EncodeStream.

EncodeFile Encrypts the data of a given file. The data will be read out of the
specified source file, get encrypted and written into the specified
destination file. Source and destination file may not refer to the
same file! In addition to the path and file names of the source and
destination files the following parameter is available:

• Progress is an optional parameter to a callback method. This

method is called to enable displaying the progress of the current
operation. This callback has the parameters Min, Max and Pos.
Pos is the position within the source stream. Min is also the
position in the source stream and Max is Min plus the number of

Chapter 3 DEC explained in detail

28

bytes to be encrypted.
DecodeFile Decrypts the data of a given file. This is the counterpart of

EncodeFile and thus has the same parameters as this function.
EncodeStringToBytes This method takes a string as input, encrypts it and returns the

encrypted data as a TBytes array. There exist four overloads of this
method. One expects a UnicodeString (you would just pass a normal
Delphi string as UnicodeString is an alias for that one) and the other
one a RawByteString.
The other two overloads are only available for the Win32 and Win64
compilers. They work on AnsiString and WideString input and TBytes
return values.
In addition to the string to be encrypted you can pass an optional
formatting class. The formatting will be applied to the encrypted
data, so you can for example return the encrypted data HEX or
BASE64 encoded.

EncodeStringToString This method takes a string as input, encrypts it and returns the
encrypted data as a string. There exist four overloads of this method.
One expects a UnicodeString (you would just pass a normal Delphi
string as UnicodeString is an alias for that one) and the other one a
RawByteString.
The other two overloads are only available for the Win32 and Win64
compilers. They work on AnsiString and WideString input and return
values. The string-based overload returns a string and the
RawByteString one a RawByteString.
In addition to the string to be encrypted you can pass an optional
formatting class. The formatting will be applied to the encrypted
data, so you can for example return the encrypted data HEX or
BASE64 encoded.

DecodeStringToBytes This method takes a string as input, decrypts it and returns the
encrypted data as a TBytes array. There exist four overloads of this
method. One expects a UnicodeString (you would just pass a normal
Delphi string as UnicodeString is an alias for that one) and the other
one a RawByteString.
The other two overloads are only available for the Win32 and Win64
compilers. They work on AnsiString and WideString input and TBytes
return values.
In addition to the string to be decrypted you can pass an optional
formatting class. This will be used to remove a formatting on the
input data. You can for example remove the formatting applied with
the EncodeStringToBytes method.

DecodeStringToString This method takes a string as input, decrypts it and returns the
encrypted data as a string. There exist four overloads of this method.
One expects a UnicodeString (you would just pass a normal Delphi
string as UnicodeString is an alias for that one), the result will be a
string and the other one a RawByteString so the result will be a
RawByteString.
The other two overloads are only available for the Win32 and Win64
compilers. They work on AnsiString and WideString input and return
values.
In addition to the string to be decrypted you can pass an optional
formatting class. This will be used to remove a formatting on the
input data. You can for example remove the formatting applied with

Chapter 3 DEC explained in detail

29

the EncodeStringToBytes method.

When using the ECBx block chaining method (which is not recommended) the size of the data

 passed to any Encode or Decode method must be a multiple of Context.BufferSize

(or in rare cases Context.BufferSize)!

TDECFormat

This is the abstract base class for the formatting classes. The methods in TDECCipherFormats

provide an optional class reference parameter of this type. It can be used to pass a concrete

formatting class to be used in that encoding or decoding method. A description of those format

classes can be found in chapter 3.3.2 Using the formatting routines.

3.3.6.7 TCipher_AES key length remarks

The implementation of the AES cipher is a bit special in the way it implements the different key

length variants AES128, AES192 and AES256. Instead of providing individual classes for those

different key lengths the TCipher_AES class automatically detects the key length and the number of

rounds it has to perform on the data, which is a direct property of the key length.

Key length in byte AES variant

0-16 AES128

17-24 AES192

25-32 AES256

3.3.6.8 List of cipher algorithms with properties not included in the IDECCipher

interface

One can still use the interface, but needs to be aware that it will not provide access to these

additional properties.

• TCipher_RC5, this has an additional rounds property

• TCipher_RC6, this has an additional rounds property

• TCipher_Rijndael / TCipher_AES, this has an additional rounds property

• TCipher_Cast128, this has an additional rounds property

• TCipher_SAFER, this has an additional rounds and a version property

• TCipher_TEA, this has an additional rounds property

• TCipher_XTEA / TCipher_TEAN, these have an additional rounds property

3.3.6.9 Cipher implementation

The actual implementations of the ciphers currently provided are in DECCiphers.pas. In order to

encrypt or decrypt data include this unit in your uses clause and create a concrete instance of one of

Chapter 3 DEC explained in detail

30

the cipher classes contained in it. If you are free to choose which cipher algorithm to use, be sure to

read our comments found in the summary XMLDOC comments, as we try to point out algorithms

which are being considered as unsafe nowadays. Such algorithms are only being provided for

backward compatibility.

3.3.6.10 Picking the right block chaining method

The following padding methods do exist. Each is shortly being described in order to allow you to pick

the most suitable for your task.

 The x-variants of the cipher modes are usually creations of the original author of DEC and
 these are non-standard implementations. Better avoid those if you can.

Block mode Description

cmCTSx Double CBC, with CFS8 padding (filling up) of a not completely filled
last block

cmCBCx Cipher Block Chaining, with CFB8 padding (filling up) of a not
completely filled last block. Each plain text block is being XORed with
the preceding block before it gets encrypted. The first block is being
XORed with the init vector. It might be wise to use a new value for
the init vector for each encryption you do and the method is not
really suited for situations where single bytes arrive which do not fill
a complete block yet, as it has to wait until a block is full before it can
start.

cmCFB8 8-bit cipher feedback mode. This mode works with a shifting register.
The content of this register depends on the whole history of the plain
text fed to the cipher algorithm. Reoccurring plain text in a data
stream thus always gets encrypted differently. If there is a
transmission error in one bit it affects as many bits as the shifting
register contains. They will be incorrectly decrypted.

cmCFBx Cipher feedback mode, but on the block size of the cipher used

cmOFB8 8 bit output feedback mode

cmOFBx Output feedback mode, but on the block size of the cipher used

cmCFS8 8 bit CFS with double CFB

cmCFSx Like CFS, but on the block size of the cipher used

cmECBx DECs implementation of the electronic code book algorithm. Since
this does not chain blocks together at all you should avoid it if
possible! This is the least secure mode!

cmCTS3 This one is only available if you enable the DEC3_CMCTS define in
DECOptions.inc. It is being provided for compatibility reasons

with old DEC versions only. Do not use it in new code!

Chapter 3 DEC explained in detail

31

3.3.7 Using the random number generators

The random number generator provides pseudo random numbers (Delphi’s built in Random function

would provide pseudo random numbers as well, as nearly all random number generators in ordinary

computers can only provide pseudo random numbers unless specialized hardware is available) and is

written in a not object-oriented way. It is suited especially for cryptographic purposes.

The DECRandom.pas unit contains two different generator algorithms. By default, the better (but

slower) one using a hash algorithm is being used. The default hash algorithm used is SHA256 but it

can be changed by assigning a different class to the global variable RandomClass. If the weaker but

faster algorithm shall be used the DoRandomBuffer global variable needs to be set to nil. As this is

a global variable one can even provide his own random number generator implementation for

applications which already use DECRandom.pas if desired.

If the AUTO_PRNG define is defined, which is the default setting in DECCoptions.inc, the random

number generator is initialized automatically in the initialization section of DECRandom.pas. In that

case it is initialized with the current system time. If the define is not set the random number

generator must be manually initialized before first use by calling one of the two overloads of

RandomSeed. The parameter-less one initializes with the current system time, the other one accepts

parameters with initialization data.

 If the random number generator is not specifically initialized a repeatable deterministic
 generator is the result. This results in always getting the exact same random numbers, which
should be avoided!

Procedure/Function Purpose
RandomSeed There are two overloads available for this procedure. If the defaults

are kept, the parameter less one initializes a non-repeatable random
number generator with a seed value (start value) based on
RandomSystemTime. If the parameterized one is used the seed value
initialized depends on the value of the Size parameter and if
applicable on the contents of the Buffer parameter.

Size = 0 The initial seed value is set to 0 and the generator is
repeatable. This should be avoided!

Size > 0 The generator is repeatable but initialization is based
on Buffer contents as well. So, if that one contains
random data the seed value will be random.

Size < 0 The seed value is based on RandomSystemTime. This is
less random than specifying a really random Buffer with
Size > 0 but better than the Size = 0 case!

RandomLong Returns an unsigned 32 bit random number
RandomBuffer This procedure needs to have an already created buffer passed in

and as 2nd parameter the number of random bytes to create. The
passed buffer is being filled with the number of random bytes
specified, starting from the first byte of this buffer.

RandomBytes Returns a TBytes array filled with random bytes. The number of
bytes to be returned is specified with the Size parameter.

RandomRawByteString Returns a string filled with random data. The size of the string in byte

Chapter 3 DEC explained in detail

32

is specified with the Size parameter. This procedure is deprecated

and we recommend to use the RandomBytes function instead.
RandomSystemTime This function creates a seed value for random number generation

based on the system time and on QueryPerformanceCounter (up to
Delphi 2010 and Windows only) or based on the system time and
TStopWatch.GetTimeStamp, which is available on all platforms.

Chapter 3 DEC explained in detail

33

3.3.8 Useful helper routines

The helper routines described in this chapter are to be found in the DECUtils unit.

Procedure/Function Description
ReverseBits Reverses the bits in the parameter passed and returns them as return value.

Passing 11111111111111110000000000000000 results in
00000000000000001111111111111111.

SwapBytes Swaps the order of bytes of the passed in parameter. A parameter
containing 01 02 03 04 hexadecimal will be returned as 04 03 02 01. The
buffer passed in will contain the swapped values after the call. As 2nd
parameter the size of the buffer to be swapped in bytes needs to be passed.

SwapUInt32 Swaps the order of bytes of the passed in parameter. A parameter
containing 01 02 03 04 hexadecimal will be returned as 04 03 02 01. In this
case it is a function with the swapped UInt32 as return value.

SwapUInt32Buffer This method gets an untyped source buffer and an untyped destination
buffer passed. Both buffers will be treated as arrays of UInt32 values and
both buffers need to be either of the same size or the destination buffer
needs to be bigger than the source buffer. The bytes of the UInt32 values in
the source buffer will be swapped each then be placed into the destination
buffer. The order of the UInt32 values stays the same, but the bytes in them
will have been swapped. The parameter Count specifies the number of

UInt32 values contained in the source parameter.

SwapInt64 Swaps the order of bytes of the passed in parameter. This function is the
same as SwapUInt32, just for Int64 typed data. The sign bit is not being

specially treated.

SwapInt64Buffer This method is similar to SwapUInt32Buffer just with UInt64 data elements
instead of UInt32 ones. The sign bit is not being specially treated.

XORBuffers Connects the bytes of two buffers passed by XOR each. You have to pass
two buffers with the bytes that shall be XOR-connected, a size parameter
for specification of the buffer size passed in byte and an output buffer. Both
input buffers and the output buffer need to have at least a size as specified
with the Size parameter.

ProtectBuffer Securely overwrites the untyped buffer passed as parameter. Additionally,
to the buffer the buffer size in bytes needs to be passed as parameter.

ProtectStream Securely overwrites the contents of a stream. Starting from the current
position within the stream SizeToProtect bytes will be securely

overwritten. You may pass in any stream type.

ProtectBytes Securely overwrites all the bytes of a passed in TBytes array of bytes.

ProtectString This procedure exists in four overloads. It securely overwrites all the bytes
in a string, RawByteString, AnsiString or WideString. The latter two types are
only available for the Win32 and Win64 compilers

BytesToRawString Creates a RawByteString out of the bytes in a TBytes array. The bytes will be
put into the string as is, means if such a byte contains a value of $41 the
resulting character of the string will be “A”. No special provisions are being
made for control characters or characters outside the 7 bit ASCII range. Use
this procedure with care!

Chapter 3 DEC explained in detail

34

3.3.9 TDECProgressEvent – displaying progress of an operation

How can progress be displayed during a lengthy encryption/decryption or hashing operation?

In DECUtils there is a type TDECProgressEvent. This is a reference to an anonymous method

and because of this it can be used in conjunction with normal methods, regular procedures and with

inline anonymous method code.

The TStream and file based methods contain an optional parameter of this event type. If you

implement it either pass a method or a normal procedure containing the same parameters as

defined in TDECProgressEvent or write the in-place code for an anonymous method.

If you use this event the event handler passed will be called in these situations:

◼ Directly before beginning of the operation. You will get the number of bytes to process by this.

State will be Started at this point. When called for this case Pos will always be zero.

◼ Each time a chunk of data has been processed. You will get the position by this. State will be

Processing at this point.

◼ Directly after finishing the operation, which is when the finalize block is executed. If an exception

is raised during processing the finalize block will be reached as well after exception handling and

the finished event will be called as it normally would be called anyway. State for this finishing

event is Finished. When the event is called for this case, Pos will always be the same as Max.

The event has three parameters:

Max Number of bytes to be processed. In case of a file this will always be the file
size. In case of a stream it will be the size passed as parameter to the stream
processing method.

Pos This is the position of the operation relative to the starting position. In case
of a file this will be relative to the start of the file and in case of a stream
this will be relative to the position the stream was at when the stream
processing method has been called.

State This gives the reason why the progress event has been called.

Chapter 3 DEC explained in detail

35

3.3.10 DECOptions.inc

The DECOptions.inc include file contains a few global defines which influence how DEC works.

Most of those should be left alone as they are needed to proper function of DEC on different

platforms.

If you want to disable some define simply put a . between the { and the $.

Example: {.$DEFINE NO_ASM}

To enable a disabled define simply remove the . between { and $.

Those defines which may be enabled or disabled without problems are in the section titled “User

configuration”. These specifically are:

◼ {$DEFINE AUTO_PRNG}, when used DEC always uses his own pseudo random number

generator instead of the Delphi standard random function.

◼ {$DEFINE NO_ASM}, when used none of the assembler versions of the routines are used.

Only pure Pascal implementations are used then. If you want to use DEC on a non Win32

platform this define needs to be on! On Win32 disabling the define can give you some smaller

speed gains.

◼ {.$DEFINE DEC52_IDENTITY}, when used this DEC version uses the same identity

identifier value DEC 5.2 used. }This enables to read files created with DEC V5.2 which used that

identity identifier.

◼ {.$DEFINE DEC3_CMCTS}, when enabled the CTS3 block cipher mode is made available. It is

not recommended to be used, since it is a less secure mode! This option is only there for cases

where one needs to deal with data which has been encoded with the cmCTS mode of DEC V3.0.

◼ {.$DEFINE FMXTranslateableExceptions}, enable this if you intend to use DEC in a

Firemonkey mobile project and want to be able to translate the exception messages without

needing to capture the exceptions.

◼ {$UNDEF OLD_SHA_NAME}, enable this if you like to use the old class name for the SHA0

hash class. For clarity the THASH_SHA class got renamed to THASH_SHA0 in DEC 6.0.

◼ {$UNDEF OLD_WHIRLPOOL_NAMES}, enable this if you like to use the old class names for

the Whirlpool hash classes.

◼ {$UNDEF ManualRegisterClasses}, enable this if you do not want to have all

formatting-, hash- and cipher-classes automatically registered in the initialization sections of the

DEC_Format, DEC_Hash and DEC_Ciphers units. If you want to use the class registration

mechanism in such a case, you need to manually register those hash- or cipher-classes you want

to use with the mechanism.

Chapter 3 DEC explained in detail

36

3.3.11 Translating exception messages

By default, all exception messages used by DEC have been declared as resource strings, containing

English text.

On Win32/Win64 resource strings are stored in special tables inside the generated exe-file

automatically and most application translation tools are able to pick them up and provide some

mechanism for translating those. This works equally well for VCL and for Firemonkey (FMX)

applications.

Firemonkey on the other hand doesn’t support this scheme on mobile platforms. On those resource

strings do compile but are treated as normal string constants. Translation tools are not able to

replace them, unless the places where they are being used (e.g. displayed on screen) are wrapped

into a call of the Translate function from FMX.Types.

In order to fix this, the FMXTranslateableExceptions define must be enabled. This enables

special constructors for the EDECException class and its descendants. Those will use the defined

resource strings but feed them to the FMX Translate function before assigning them to the exception

class.

Your translation tool still might not identify those texts (some do) as it would be complicated for it to

follow your source, but they usually allow to manually add texts to be translated. The output of such

tools will be a .lng file usually, which you load into a TLang component you place on your main form.

That component will provide all texts to your components and for the translate function of

FMX.Types.

Chapter 3 DEC explained in detail

37

3.3.12 List of no longer recommended algorithms

The following algorithms are no longer recommended for use due to security issues. They are still

contained in DEC for compatibility reasons and “the sake of completeness”:

Ciphers:

◼ DES, is considered to be too weak nowadays6.

◼ NewDES, it can be broken too easily.

◼ Skipjack, is considered to be too weak nowadays7.

◼ 3Way, it is vulnerable to differential cryptoanalysis

◼ Square, as there exist a specialized attack on this one

◼ IDEA, as there exist classes of weak keys and some other successful attacks8.

◼ TEA, as it is known that three other equivalent keys exist for each key and because of other

existing attacks9.

Hashes10:

◼ MD2, is considered to be broken at least on paper.

◼ MD4, is considered to be broken at least on paper.

◼ MD5, is considered to be broken (collisions): HMAC using MD5 is still considered to be ok11.

◼ SHA0, has known issues with the initialization12.

◼ SHA1, is considered to be broken (collisions). HMAC using SHA1 is still considered to be ok13.

◼ SHA224, is considered to be too weak by German BSI14.

◼ HAVAL-128, collisions have been found.

◼ RIPEMD, but only the original variant.

◼ RIPEMD128, because the message digest length of 128 bit is considered to be too small15.

All other RIPEMD variants are still considered to be ok.

◼ PANAMA

◼ Tiger, at least the 192 Bit variant (which is the only one currently implemented in DEC) is

considered to be broken at least on paper.

◼ Whirlpool0, newer variants are ok but the Whirlpool1 variant is the recommended one as it is

safer than WhirlpoolT.16

6 https://en.wikipedia.org/wiki/Data_Encryption_Standard
7 https://en.wikipedia.org/wiki/Skipjack_(cipher)
8 https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
9 https://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm
10 https://en.wikipedia.org/wiki/Hash_function_security_summary
11 https://en.wikipedia.org/wiki/HMAC
12 https://en.wikipedia.org/wiki/SHA-1
13 https://en.wikipedia.org/wiki/HMAC
14 https://de.wikipedia.org/wiki/SHA-2
15 https://en.wikipedia.org/wiki/RIPEMD
16 https://en.wikipedia.org/wiki/Whirlpool_(hash_function)

Chapter 3 DEC explained in detail

38

3.4 The class registration mechanism

The classes TDECHash, TDECCipher and TDECFormat do contain a registration mechanism

where all descendant classes are registered as meta-classes in a generic list. This mechanism is

helpful when you build an application which shall contain a list of algorithms to pick from, so you can

dynamically list the available algorithms and create instances of those. All those classes inherit this

mechanism from the DECBaseClass unit, where it is implemented in TDECClassList.

Each of the formatting, cipher or hash classes is being registered into the appropriate class list in the

initialization section of the und implementing the particular class. The class list is implemented as a

generic TDictionary and provided as a public class var of the base class of the formatting,

cipher or hash classes. Each class type is registered with a property called identity as key. This

identity is a unique Int64 number specifying the class. You may for instance store this number in

the header of some encrypted file to record with which algorithm it was encrypted. With the class

registration mechanism, you can easily find the right class used for decipher the file and create the

necessary instance of this cipher class. Besides the ability to loop through all registered class types in

the list, the mechanism provides two methods for searching a class type reference:

◼ ClassByName – searches for a given long or short class name. Examples: TDECFormat_HEXL

is a long name or HEXL would be the short name. If such a class is registered in that list the class

reference will be returned and you can call the Create constructor on this to create an object

reference of this type returned. If no class with such a name is registered an exception is being

thrown.

◼ ClassByIdentity – searches for a given unique ID. If a class with the given Identity is

registered in that list the class reference will be returned and you can call the Create

constructor on this to create an object reference of this type returned. If no class with such a

name is registered an exception is being thrown.

◼ GetClassList – with this method you can get a string list of all the classes registered. Just

pass any valid TStrings or TStringList object as parameter and you will have the long names of all

the registered classes.

It is also helpful if you have some data which describes the algorithm used by its DEC identity value.

With the list you can find the correct class and create the necessary instance.

Example:

Uses

 Generics.Collections, DECHashBase;

var

 MyClassRef : TPair<Int64, TDECClass>;

 Identity : Int64;

begin

 Identity := 123;

 If TDECHash.ClassList.TryGetValue(Identity, MyClassRef) then

 ShowMessage(MyClassRef.Value.ClassName);

Chapter 3 DEC explained in detail

39

end;

If you like to search for a class reference by its ClassName, you can use the ClassByName class

function of the corresponding base class.

Example for finding a class reference and creating an object instance from it:

Uses

 DECHashBase;

var

 Hash:TDECHash;

begin

 Hash := TDECHash.ClassByName(’THash_MD5’).Create;

 try

 Hash.Init;

 finaly

 Hash.Free;

 end;

end;

The class type list mechanism allows for registering and unregistering new classes at runtime and it is

implemented in such a way that if the DEC Unit implementing a registered class type is being

unloaded because it belongs to a package which is being unloaded, the class type will be

unregistered. This prevents you from retrieving class references from a registration list of classes

which are no longer available. You cannot try to create an object reference from it and cause an

access violation because the class implementation is no longer available.

Chapter 3 DEC explained in detail

40

3.5 Extending DEC

This chapter describes what to consider when adding new formatting, cipher or hash classes to DEC.

If you do extend DEC in any way it would also be nice if you would send us your source code

modification so we can add it to the next release, if deemed useful for the general audience of DEC!

Of course, we will mention you in the DEC hall of fame: the list of contributors!

And remember: whatever you add needs to have unit tests implemented by you!

 If you add a new formatting class, a new hash class or a new cipher class do not forget to
 register it via the RegisterClass class procedure as otherwise the demo applications will not
automatically pick it up.

3.5.1 Structure and style

If adding or modifying anything it would be really nice and helpful to stick to a certain style and

structure. If the modification will flow back into the main repository/project this will make things

easier. Here a list of things to consider:

1. When adding new units do add the copyright notice, as found in already existing units, at the top

of the unit.

2. Do not use syntax or libraries not supported since at least the minimum Delphi version DEC

currently claims support for! This minimum version is specified in chapter 1.

3. For Delphi we want to use unit namespace syntax in the uses sections.

4. DEC tries to be FPC compatible, but that cannot deal with unit namespaces yet. So use the proper

IFDEFs as seen in the already existing units to make it work with both compilers.

5. In implementation source code do not use unit namespace syntax, as this would not be FPC

compatible.

6. There might be things which cannot be made FPC compatible at all. If something like that is

required put it in appropriate IFDEF sections so FPC does not “see” it.

7. After changing or adding something try to update or add unit tests for it.

8. When creating a pull request for something consider these rules:

a. The pull request should contain a single commit only, if possible.

b. The pull request should be focussed on a single topic and the topic should

not be too broad. Better split up large topics into several smaller pull requests and

before starting a large topic better start a discussion with the maintainers before to

avoid too differing views on the topic and the pull request to be rejected.

We do like additional participants, but better discuss things first before implementing

them.

c. Try to describe the contents of the pull request and where applicable the aim. When

adding a new cipher for instance the aim is clear but when changing some method, it

might not be clear why it shall be changed.

d. When turning in a pull request be open for discussion about its contents and about

possible requests to modify something in it.

e. Do not turn in any modifications/additions which do not compile!

Chapter 3 DEC explained in detail

41

3.5.2 Adding new ciphers

New cipher classes added to DEC should always descend from TDECPaddedCipher from the

DECCipherPaddings unit. They need to provide at least implementations for the following

methods, from TDECCipher from the DECCipherBase unit. This means they need to be

overwritten:

◼ DoInit

◼ DoEncode

◼ DoDecode

While you can overwrite the Encode, Decode and the protected EncodeXXX/DecodeXXX

methods from TDECPaddedCipher you normally do not need to. This would be rather

uncommon!

Register your algorithm by adding a

TCipher_XXX.RegisterClass(TDECCipher.ClassList); call to the implementation

section of the DECCiphers unit. Without doing so your class will not appear in any demo which

makes use of the registration mechanism.

After implementing your new cipher class, it is good practice to implement the basic set of unit tests

for it as well. Get at least one reliable set of input data and corresponding encrypted data. Reformat

the encrypted data to be in the TFormat_ESCAPE format as this is the standard for our unit tests.

Then look at the existing unit tests in the TestDECCipher unit and implement such tests for your

new cipher class.

 If you add some new cipher algorithm we would like to know about it and it would be nice if
 you could share it with us so it becomes part of the standard version of DEC.

3.5.3 Adding new cipher paddings / block modes

If you like to add a new cipher mode you need to add the following methods to the

TDECCipherModes class in the DECCipherModes unit:

• EncodeXXX

• DecodeXXX

XXX is the name of your mode.

Additionally, the TCipherMode enumeration in the DECCipherBase unit needs your mode

added as a new value and then you need to update the Encode and Decode methods of the

TDECCipherModes class in the DECCipherModes unit. You need to add your new enumeration

value to the case statement and call the EncodeXXX or DecodeXXX methods for your new mode.

Chapter 3 DEC explained in detail

42

After adding your mode make sure it works by adding some unit tests. For this add a

TestEncodeXXX and TestDecodeXXX method to the TestTDECCipherModes class in the

TestDECCipherModes unit. Make sure you have valid test data from a trustable source to do so.

 If you add some new cipher padding algorithm we would like to know about it and it would be
 nice if you could share it with us so it becomes part of the standard version of DEC.

3.5.4 Adding new hash algorithms

If you like to add a new hash algorithm add a new class THash_XXX to the DECHash unit where

XXX is the name of your algorithm. Your class needs to override at least DoTransform, in fact this

is enough for most hash algorithms. Your class usually should descend from the TDECHash class,

but there exist quite a few hash algorithms which stem from the MD4 algorithm so those would

inherit from THashBaseMD4.

Register your algorithm by adding a THash_XXX.RegisterClass(TDECHash.ClassList);

call to the implementation section of the DECHash unit. Without doing so your class will not appear

in any demo which makes use of the registration mechanism.

Now it is time to add unit tests. Fetch good test data from a reputable source and add a unit test

class to the TestDECHash unit similar to this one (XXX is the name of your hash algorithm):

// Test methods for class THash_XXX

{$IFDEF DUnitX} [TestFixture] {$ENDIF}

TestTHash_XXX = class(THash_TestBase)

public

 procedure SetUp; override;

published

 procedure TestDigestSize;

 procedure TestBlockSize;

 procedure TestIsPasswordHash;

 procedure TestClassByName;

 procedure TestIdentity;

end;

Fill in the methods. Look the necessary contents up in one of the other test classes. Adapt your test

data. For getting the identity of your class you might want to run your new unit tests. The test for the

identity will fail as you did not yet adapt your identity test value. Note the value your test calculated

and change the expected value to that one.

 If you add some new hash algorithm we would like to know about it and it would be nice if you
 could share it with us so it becomes part of the standard version of DEC.

3.5.5 Adding new formatting classes

Chapter 3 DEC explained in detail

43

In order to add a new formatting a class with the following signature usually needs to be added to

the DECFormat unit. In some rare cases the class looks a bit different, an example for this would be

the TFormat_Radix64 class. Make sure your class only contains class methods or class vars but

no regular methods or fields!

/// <summary>

/// Description of your new format

/// </summary>

TFormat_XXX = class(TDECFormat)

protected

 class procedure DoEncode(const Source; var Dest: TBytes;

 Size: Integer); override;

 class procedure DoDecode(const Source; var Dest: TBytes;

 Size: Integer); override;

 class function DoIsValid(const Data;

 Size: Integer): Boolean; override;

public

 class function CharTableBinary: TBytes; virtual;

end;

Implement all those class methods.

Register your algorithm by adding a

TFormat_XXX.RegisterClass(TDECFormat.ClassList); call to the implementation

section of the DECFormat unit. Without doing so your class will not appear in any demo which

makes use of the registration mechanism.

Now it is time to add unit tests. Fetch good test data from a reputable source and add a unit test

class to the TestDECFormat unit. For this look at the already implemented test classes, copy the

signature of the one fitting best and insert this under a new name matching your new format’s name.

Then implement all the test methods the same way the methods for the already existing class have

been implemented.

 If you add some new formatting algorithm we would like to know about it and it would be nice
 if you could share it with us so it becomes part of the standard version of DEC.

When adding a new formatting class make sure it only contains class functions / class

 procedures and class vars. Otherwise some places where your class is being used in DEC might

not function, as DEC expects not to work on object instances of these formatting classes but on the

class itself via class methods.

3.5.6 Adding new CRC variants

 If you add some new CRC polynomial we would like to know about it and it would be nice if you
 could share it with us so it becomes part of the standard version of DEC.

Chapter 3 DEC explained in detail

44

Please ensure you have valid test data for the new CRC variant you would like to add before actually

doing so. Just adding new variants without proper unit tests does not help anybody.

Adding a new CRC variant requires to add a new enumeration value to the TCRCType type in

DECCRC.pas. The enumeration value should be added at the end. It further requires adding an

entry to the CRCTab constant. The entry should be added at the end of the table. The entry consists

of the polynomial value, the number of bits the CRC operates on, the start value with which the CRC

is to be initialized, the initialization value for the finalization vector and a Boolean value defining

whether the polynome is an inverse one.

After adding the necessary definitions to the DECCRC unit you need to add a unit test for it. To do so

open the TestDECCRC unit and add the following new published methods TestCRCInitCRCXXX and

TestCRCXXX where XXX is the name of your new CRC. A private SetUpCRCXXX method is usually

required as well.

3.5.7 Adding unit tests

There are unit tests available for nearly all methods etc. shipping in the default DEC distribution,

except for some of the random number functions or some of their behaviour. These unit tests have

been written in a way that they can be run as DUnit tests and as DUnitX tests as well. This has been

done because DUnit still has the better GUI test runner, while DUnitX tests can basically be run on

other platforms as well.

For this there are two unit test projects provided. One for DUnit and one for DUnitX. If you want to

switch between those you need to either define or undefine the DUnitX define in defines.inc of the

unit tests. Otherwise you will get compilation and/or runtime errors.

The unit test implementation units are in the Unit Tests\Tests subfolder. Look at the tests already

implemented, sometimes you just need to add further test data as many tests work on

arrays/structures of test data. In other cases, you may want to add new test methods. Whatever you

do: please let us know! We may add your enhancements to DEC so all users will profit from expanded

test coverage!

Chapter 3 DEC explained in detail

45

3.5.8 Hash unit test data management

In an attempt to unify the handling of unit test data the following architecture has been created. It is

currently being used for the hash unit tests only. Here’s a class diagram:

Some things to note:

1. The interfaces have been set up as an inheritance hierarchy as ciphers most likely will need a few

changes (if they should use this architecture one day) so there is a common base interface.

2. There is a strict differentiation between interfaces returning test data and interfaces setting up

test data.

3. The InputData contained in ITestDataRow can be a concatenation of several

AddInputVector calls.

Chapter 4 Demos

46

4 Demos

In order to make your life easier, DEC ships with some demo applications. This chapter lists them and

their purpose.

◼ Cipher_Console

Simplistic demo showing how to encrypt and decrypt some string. If new to the topic of

encryption start here.

◼ Cipher_FMX

This cross platform compatible demo, using the Firemonkey GUI framework, allows the user to

choose a cipher algorithm, a cipher block chaining mode and a format conversion class. The user

can encrypt or decrypt a string he enters afterwards. The demo is way more advanced than the

Cipher_Console demo as it demos the class registration mechanism as well.

◼ Format_Console

Simplistic demo for showing how to use one of the formatting classes to change the format of a

given string.

◼ Hash_Console

Simplistic demo showing how to calculate a hash value over a given string. If new to hash value

calculation start here.

◼ Hash_FMX

This cross platform compatible demo, using the Firemonkey GUI framework, allows the user to

select a hash algorithm and format conversion classes for the input and the output data. The user

can enter some text to be hashed then. The text will first get formatted with the input format

class, the hash value will be calculated and then the output formatting will be applied before

displaying the output. With a checkbox the user can enable a live output mode where the output

is updated after each entered character.

The demo is way more advanced than the Hash_Console demo, as this one shows the use of

the class registration mechanism as well.

◼ Random_Console

A simplistic demo showing how to use the random number generator.

◼ ProgressDemoVCL

A simple VCL based demo for encrypting a file and displaying the progress while encrypting. One

can select the method for progress display so all three possible ways are demoed.

	1 What is DEC 6.2 and what not?
	1.1 Text conventions used in this documentation
	1.2 Revision history of this document

	2 A short explanation of cryptography
	2.1 CRC – Cyclic Redundancy Check
	2.2 Hash functions
	2.3 Cipher functions
	2.4 Random number generator

	3 DEC explained in detail
	3.1 Installation
	3.2 General structure
	3.3 Using DEC
	3.3.1 The DEC base class
	3.3.2 Using the formatting routines
	3.3.3 Using the CRC algorithms
	3.3.4 Using the hash algorithms
	3.3.4.1 Base structure of the hash algorithms
	3.3.4.2 Methods for using the hash classes
	3.3.4.3 Exceptions to the common API for hash classes

	3.3.5 Using the key deviation algorithms
	3.3.5.1 MGF1
	3.3.5.2 KDF1, KDF2, KDF3
	3.3.5.3 KDFx and MGFx
	3.3.5.4 PBKDF2

	3.3.6 Using the cipher algorithms
	3.3.6.1 Base structure of the cipher algorithms
	3.3.6.2 TDECCipher
	3.3.6.3 TCipherContext
	3.3.6.4 TDECCipherNull
	3.3.6.5 TDECCipherModes
	3.3.6.6 TDECCipherFormats
	3.3.6.7 TCipher_AES key length remarks
	3.3.6.8 List of cipher algorithms with properties not included in the IDECCipher interface
	3.3.6.9 Cipher implementation
	3.3.6.10 Picking the right block chaining method

	3.3.7 Using the random number generators
	3.3.8 Useful helper routines
	3.3.9 TDECProgressEvent – displaying progress of an operation
	3.3.10 DECOptions.inc
	3.3.11 Translating exception messages
	3.3.12 List of no longer recommended algorithms

	3.4 The class registration mechanism
	3.5 Extending DEC
	3.5.1 Structure and style
	3.5.2 Adding new ciphers
	3.5.3 Adding new cipher paddings / block modes
	3.5.4 Adding new hash algorithms
	3.5.5 Adding new formatting classes
	3.5.6 Adding new CRC variants
	3.5.7 Adding unit tests
	3.5.8 Hash unit test data management

	4 Demos

